

An algorithm to assign GRADE levels of evidence to comparisons within systematic reviews

Alex Pollock, Sybil E Farmer, Marian C Brady, Peter Langhorne, Gillian E Mead, Jan Mehrholz, Frederike van Wijck, Philip J Wiffen

Improving health through research

Conflict of interest

I have no actual or potential conflict of interest in relation to this presentation.

Funding acknowledgements: This project was funded by a project grant (CZH/4/854) from the Chief Scientist Office (CSO), part of the Scottish Government Health and Social Care Directorate.

Background & Aim

nmah

Cochrane overview of reviews of interventions to improve upper limb (arm) function after stroke

40 included systematic reviews 127 comparisons with relevant outcomes Plan to use GRADE approach, but subjectivity led to inconsistency of application

AIM: to develop and use an algorithm to objectively assign GRADE levels of evidence

Methods: exploratory & pragmatic

Results

1. Algorithm for determining "downgrades" to levels of evidence in reviews.

Area assessed	Imprecision	Risk of bias (trial quality)	Inconsistency	Risk of bias (review quality)
Method of	Number of	Participants in studies with	Heterogeneity	Responses to
assessment	participants	low ROB for randomisation		AMSTAR questions
		& observer blinding		1-4

2. Formula / 'rules' for applying GRADE level of evidence from number of downgrades determined using the algorithm.

GRADE level of evidence	Number of downgrades
HIGH	0 downgrades
MODERATE	1 or 2 downgrades
LOW	3 or 4 downgrades
VERY LOW	5 or 6 downgrades

Conclusions

Consistent

Transparent

Efficient

Mechanistic?

Captures what is subjectively judged to be of greatest importance to this specific evidence base

Implications

nmo

For each of 127 comparisons:

Objective algorithm (based on GRADE) assessed:

- number of participants
 heterogeneity (l²)
- risk of bias of trials quality of the review

Implications: synthesis

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><table-row><table-row><table-row><table-row><table-row><table-row><text><text>

Low or Very Low

3. Research Implications

1. Evidence of benefit

	Upper limb function	Impairment	ADL
CIMT			
Mental practice			0
Mirror therapy			
Virtual reality			
> 20 hours Repetitive task training			
Sensory interventions vs no treatment	\checkmark	\checkmark	
Robotics			
Brain stimulation: tDCS			Ο

2.Evidence of no benefit or harm

	Upper limb function	Impairment	ADL
Bilateral arm training vs unilateral	X	0	0
Stretching & positioning		0	Ο
Repetitive task training	Ο		

3. Research recommendations nmoho-rue

Definitive RCTs	Further research	Systematic review
DOSE	Stretching &	 Repetitive task
CIMT	positioning	training
Mental practice	 Sensory interventions 	
Mirror therapy	 Robotics 	
Virtual reality	tDCS	
	 rTMS 	 Biofeedback
	• Hands-on therapy	 Bobath therapy
	 Music therapy 	• Electrical stimulation
	Pharmacological interventions	 Reach-to-grasp training
	Strength training	 Strength training

Pollock A, Farmer SE, Brady MC, Langhorne P, Mead GE, Mehrholz J, van Wijck F. Interventions for improving upper limb function after stroke. Cochrane Database of Systematic Reviews 2014, Issue 11. Art. No.: CD010820

Pollock A, Farmer SE, Brady MC, Langhorne P, Mead GE, Mehrholz J, van Wijck F. Wiffen P. An algorithm was developed to assign GRADE levels of evidence to comparisons within systematic reviews. J Clinical Epidemiology 2015 (published online 1st Sept 2015)

alex.pollock@gcu.ac.uk